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Introduction

As machine learning models increase in presence throughout 
health care, the need for tools to robustly measure their 
performance characteristics greatly increases. While the 
medical field has a long history of evaluating the performance of 
diagnostic tests, machine learning models pose new challenges 
to interpreting performance characteristics.[1] On the surface, 
both types of tests can digest complex biology to a singular 
result, but the potential sources of error involved in each 
dataset vary greatly. Where traditional diagnostic tests involve 
measurement of one or more analytes, machine learning models 
can interpret orders of magnitude more features from a rich 
dataset.[2] Just as understanding which other substances might 
interfere with a single analyte test is important, understanding 
what aspects of normal operation may impact a machine 
learning model is critical to evaluating its performance.[3,4] This 
work studies how to simulate some known artifacts in pathology 
and evaluates how they affect existing machine learning models.

A significant concern with applying machine learning models 
in health care is the possibility of accumulating undesired or 
biased errors when a model is used in a real‑world setting.[5‑7] 
Algorithms can fail by not taking into account known problems 
and could perpetuate inequities in health care. Obermeyer et al. 

found that a risk evaluation algorithm was biased against black 
patients because it used money spent on health care as a proxy 
for health.[8] Black patients at a given risk score were far more 
sick than their white counterparts, so because black patients 
have less access to health care, the algorithm recommended 
fewer health‑care interventions for them.

Digital pathology models are some of the closest deep learning 
models to being used in a clinical setting. These models leverage 
advances in computer vision models to learn the process a 
pathologist might take in evaluating tissue morphologies 
and staining patterns to augment a pathologist’s diagnostic 
evaluation. Several such products are reportedly under clinical 
development,[9] with several already gaining clinical approval 
in the European Union to help pathologists focus on regions 
of interest when evaluating prostate biopsies.[10,11]

We sought to probe two such models developed for research 
purposes, to understand their limitations. For the first model, 
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Coudray et  al.[12] published a convolutional neural network 
model for classifying histological subtypes of nonsmall cell lung 
cancer, based on the InceptionV3 architecture.[13] Histological 
classification is vitally important in the proper diagnosis of all 
cancers, as it is a large determinant of what types of therapies 
are available for a patient. For example, most targeted therapies 
in lung cancer are only for adenocarcinomas.[14]

The second model and dataset we tested was an internal dataset 
of kidney histopathology samples. Instead of classification, 
the purpose of this convolutional neural network was to label 
the different tissue components present on a tissue sample. 
This segmentation task was meant to differentiate different 
components of tissue and label kidney glomeruli that were 
globally sclerosed and normal, in addition to labeling the other 
components of tissue that were present.

The enumeration, identification, and mitigation of artifacts 
are frequently discussed topics in the digital pathology space. 
Manufacturers have published white papers and protocol 
guidance to help pathologists be consistent in tissue staining 
and fixation, while academic pathologists have focused on 
reporting and understanding the causes of artifacts.[15‑18] In 
addition, the challenges of whole‑slide imaging, and best 
practices for creating a pipeline that can robustly handle the 
mixed quality of tissue samples, have been described by other 
groups.[19] Automated toolkits, such as HistoQC, have been 
created to identify slides or regions of slides that are affected 
by artifacts as a QC process.[20] In this study, we describe a 
tool for analyzing the performance of histopathology models 
by introducing artifacts and studying their effect.

Methods

Software description
The artifact generation package was developed as a 
custom‑written Python module to generate synthetic 
artifacts. The goal of this module was to artificially create 
histology artifacts to evaluate the error bounds of machine 
learning systems when presented with failure states or 
poor‑quality data. Histology is a well‑studied field, and there 
is plenty of literature describing different types of artifacts, 
including common problems with histology samples. Seven 
different types of artifacts were simulated, and each was 
parameterized to allow for quantification of noise levels 
[Figure 1 and described in section 2.2].

A few general principles guided the development of this 
artifact generation toolkit. First, an artifact should be generated 
according to describable and explainable methodologies. 
However, to expand the variety of outputs, the specific 
parameters of an individual instance of an artifact should be 
driven by seeded random generation, as to be diverse and 
reproducible. The method should be able to run with the only 
required input being the image tile itself to reduce the overhead 
of the method and enable simple parallelization. Finally, each 
method should have user‑configurable parameters to tune the 
artifacts in future projects. Together, this philosophy drove how 

these artifacts were generated, and could provide a framework 
for other contributors to add new artifacts.

Artifact generation methods
Bubbles
Bubbles create an artifact on top of the tissue on the slide and 
can be formed in a few ways. Air bubbles can be introduced 
by air getting underneath the coverslip, while nuclear bubbles 
can be caused by heat or other conditions that cause protein 
coagulation.[15,16] Our toolkit generates bubbles by creating a 
partially transparent layer to overlay on top of the tissue tile 
image. The locations of the bubbles are generated randomly 
across the image, and each of the bubbles is generated by a 
two‑dimensional Gaussian distribution. The size, orientation, 
and width of these distributions are determined by their 
randomly generated covariance matrices, to create reasonable 
but small bubbles. A  fixed number of these Gaussian 
distributions are summed together to create the set of bubbles. 
The edges of these bubbles are found and are colored a 
darkened version of the mean color of the image. The interior 
of the bubbles is colored a fixed light gray color. In future work, 
any of these colors or distributional settings could be varied 
and adjusted using the function input parameters.

Tissue fold
Tissue folds occur when the thin tissue slice is not uniformly 
spread out and folds back over itself, often due to heterogeneous 
material properties within the sample.[16] Toolkits exist for 
identifying these regions in a sample as part of an imaging 
quality control process.[21] We generated fold artifacts using a 
path along a randomized three‑point spline, anchored on the 
edges of the images and containing a single intermediate knot. 
The spline region was then randomly shifted to another region 
of the image, with some warping to get a sample of tissue. The 
image was tiled by mirroring at the edges to allow for sampling 
beyond the edge of the original image.

The sampled tissue region was then overlaid on top of the original 
image, with a multiplicative combination after a slight Gaussian 
blur. This created a tissue fold of a single layer on top of the 
image. This process is repeated recursively over the same spline 
region to build up a fold of multiple layers. The default number 
of folded layers is two on top of the original image, as one layer 
would be sandwiched in the wrong direction, and another would 
be heading back in the correct orientation. This tissue sampling 
makes the assumption that locally, the texture and staining at the 
tile level are sufficiently consistent to make tissue folds.

Illumination
Uneven illumination artifacts can occur when the light source 
behind the histopathology slide is not consistent across the 
image. Existing methods can correct this illumination issue as 
a quality control step.[22] This illumination artifact is generated 
by adding together three wide Gaussian distributions to create 
an illumination map. The minimum and maximum illumination 
change is randomly generated within a narrow range of 
80%–110% and used to rescale the Gaussian map. This rescaled 
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Gaussian map is used to change only the brightness (value) of 
the image in HSV space.

Marker line
Pathologists often use marking pens to delineate regions of 
interest on a histology slide, for measurement, or other uses. 
While a pathologist would recognize that these structures 
were not a feature of the tissue sample, an algorithm may not 
be able to accurately distinguish the two. As such, a marker 
artifact was generated to test algorithms for their sensitivity to 
this kind of change. The marker artifact has a fixed width and 
follows a spline path from one edge to another, with a single 
intermediate knot between the start points and endpoints. 
The color is randomly generated from a range of dark colors, 
and the marker has an alpha of 0.75, giving it a slightly 
transparent appearance. Within the generator itself, more of 
these parameters are tunable, though for the purposes of this 
study, the default settings were used.

Sectioning
Sectioning artifacts are the result of unevenly cut regions of the 
tissue section during microtomy leading to varying thicknesses, 
and thus varying staining, across the slide.[15] This was simulated 
by generating a randomized line with a fixed relatively large 
width, and a slightly randomized edge. Within this sectioned 
region, to whiten the image, the saturation of the image is 
decreased, and the brightness is increased by half that amount. 
The amount of saturation increase is randomized within a range, 
and the effect is stronger near the middle of the section than the 
outsides of the sectioned region. The result is to make a region 
that looks thinner than the rest of the unaltered image.

Stain alteration
Even with a relatively consistent and well‑known stain pattern 
like hematoxylin and eosin (H and E), there can be variability 
in the stain concentration and application can vary.[23] The stain 
alteration artifact involves artificially changing the staining 
concentrations of an H and E image. This is performed using the 

stain deconvolution GitHub package to determine the relative 
concentrations of H and E, and background using a generalized 
Ruifrok‑Johnston color deconvolution.[24,25] Each of the stain 
levels is then adjusted up to 1.25× to 3× their original levels. 
Alternatively, the levels can be adjusted down from between 
80% and ⅓% of their original levels. The level of change 
is chosen at random, and independently for H  and  E. The 
background can be increased to 1.5× original or decreased to ⅔ 
of the original levels. Afterward, the image is reconstructed with 
the new stain concentrations, on a full slide level, rather than a 
random tile by tile basis in the same manner as other artifacts.

Tissue tears
Slides are made by cutting tissue blocks into very thin 
sections, typically 3–5 μm using a microtome; however, this 
process does not always work perfectly. Due to technical 
issues during the cutting process, for example, when hard 
particles are present in tissue samples or due to vibrations in 
the knife blade, tears can occur within the cut tissue section. 
While these tears can have multiple patterns, dependent on the 
cause of the artifact, the generated tears were designed to mimic 
Venetian‑blind pattern tears.[16] While the tears generated by 
this algorithm are configurable, they appear in the range of 
chattering tears to a continuous tear.

Tears are generated by first creating a randomized two‑point 
spline or a line, which the tear will follow. The tear can start or 
end away from the edge (up to 15% of the size of the image), 
though this will only happen 50% of the time for each end of 
the tear. Once the tear path is generated, the center of each 
chatter in the tear is generated 20–40 pixels apart at random.

The tear pattern is created because of the layered nature of the 
point generation and can be tuned to have more perpendicular 
or more inline spread. The first layer has only 3–8 points, and 
50% of the total spread, so it lays out the general shape of the 
tear. The second and third layers have their number of points 
generated based on the density of points in the end map, to 

Figure 1: An example of seven types of simulated artifact, bubbles, tissue folds, uneven illumination, pen marks, sectioning artifacts, altered staining, 
and tissue tears. These artifacts are applied to the lung tissue tiles like in this example
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create the rest of the fill of the torn region. A smoothing layer 
and edge randomization is applied after that to make the tear 
look more natural. This tear shape then has a 2‑pixel edge that 
is colored a darkened version of the average pixel color. The 
rest of the tear is colored background white, and the entire 
tear layer is overlaid on top of the image with a slight alpha 
transparency.

Experimental design
Artifacts were generated on both datasets and evaluated 
with the previously described models. The first dataset was 
Lung Cancer subtype classification by Coudray et al. where 
the tile inputs were used to call whether a tissue sample 
was adenocarcinoma, squamous cell carcinoma, or normal. 
The second pathology dataset was an internal kidney tissue 
dataset, where the goal was to perform image segmentation 
and classify pixels into six potential labels. While these models 
and datasets clearly differ in goals, they show the variety 
of applications that can be evaluated for their robustness to 
synthetic artifacts.

For both the datasets, there were 18 different levels of 
manipulations performed across the 7 different artifacts, with 
different percentages of tiles evaluated [as described in Table 1]. 
The varying percentages of artifacts were meant to provide a 
reasonable approximation of how often these artifacts might 
occur on a sample. To evaluate the raw effect of the artifact, 
each of the generated artifacts was also applied to all the tiles 
in the 100% experiments. In addition, a control study was run 
to evaluate the performance of the models on unperturbed data.

Due to the large number of samples and experimental 
conditions involved, we utilized the Snakemake workflow 
engine[26] to reproducibly execute the full prediction and image 
manipulation pipeline. The pipeline takes in a list of studies 
to apply, as well as percentage of tiles to manipulate for each 
study. Tiles were pseudorandomly selected independent of 
location within a slide using a random number generator 
seeded by the slide and experiment to compare different 
experiments on the same slides. The pipeline then proceeds 
according to the workflow described in Coudray et al., except 
for intercepting the tiled images to apply the relevant image 
manipulations [Figure 2]. While the kidney segmentation was 
built in MATLAB, the same artifact generation workflow was 
applicable.

The cancer genome atlas lung adenocarcinoma/lung 
squamous cell carcinoma/normal classification
The Coudray model takes in a pathology slide from a biopsy 
of a patient suspected to have nonsmall cell lung cancer, 
and classifies the slide as normal tissue, adenocarcinoma, or 
squamous cell carcinoma. The original authors trained the 
model on tissue slides from the cancer genome atlas (TCGA) 
lung adenocarcinoma  (LUAD) and lung squamous cell 
carcinoma  (LUSC) projects.[27,28] TCGA is an invaluable 
collection of molecular and phenotypic data from thousands 
of cancer patients across over 33 cancer types all collected 
under a rigorous protocol. All TCGA data that do not identify 

the source patient are available publicly, so we used the same 
TCGA dataset used to train the model to make our evaluations.

We downloaded the entire corpus of tumor and normal tissue 
slides from the National Cancer Institute’s Genomic Data 
Commons Legacy Archive  (https://portal.gdc.cancer.gov/
legacy‑archive/) for the TCGA LUAD[27] and TCGA LUSC[28] 
studies. Tissue slides were identified by the presence of “01” 
in the sample barcodes, while normal tissue was identified 
by the presence of “11” in the barcode per the TCGA 
barcode documentation. We obtained pretrained weights, and 
preprocessing, prediction, and tile score aggregation scripts 
from the original model authors.

Kidney pathology internal dataset
An internal histopathology dataset of trichrome‑stained kidney 
tissue samples was used to evaluate the effects of artifact 
addition on a deep learning model used for segmentation 
rather than classification. Instead of a whole tile or slide 
classification, this model used the DeepLab V3+  network 
based on the ResNet18 architecture to provide a label to each 

Figure 2: Schematic of processing steps undertaken by our Snakemake 
workflow. The “manipulate” tiles step in red was only applied to 
experimental studies

Table 1: A description of the 18 experiments performed 
based on the seven artifacts: bubbles, tissue fold, 
uneven illumination, marker line, uneven sectioning, 
stain alteration, and tissue tear. An additional control 
experiment was performed on the unaltered tiles to 
evaluate the baseline performance of the models

Artifact Type Percent of Altered Tiles in Experiment
Bubbles 20%
 100%
Tissue Fold 20%
 100%
Uneven Illumination 10%
 50%
 100%
Marker Line 50%
 90%
 100%
Uneven Sectioning 15%
 30%
 100%
Stain Alteration 10%
 30%
 100%
Tissue Tear 15%
 100%
Control 0%
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of the tile’s pixels.[29] Each pixel was labeled as one of the six 
possible classes  (listed in decreasing prevalence): Tubules, 
interstitium, open glomeruli, arterioles, miscellaneous, and 
globally sclerosed glomeruli. The miscellaneous label was 
assigned to the remaining areas, including small black spot 
artifacts from the staining process. These labels were provided 
by an experienced pathologist for the training set that was used 
to train the deep learning model.

The kidney tissue slide images were preprocessed by splitting 
them into 256 × 256 RGB images. These images were also 
stained normalized, using Reinhard normalization from the 
Stain Normalisation Toolbox.[30] Data augmentation including 
reflection, rotation, and translation was included to increase 
the diversity of training examples. This model architecture 
was implemented using MATLAB software. A held aside set 
of 36 tissue samples or 4744 tiles was used as a testing set and 
where the artifacts were applied to evaluate the robustness of 
this trained model.

Results

Lung tissue classification results
To better compare the two datasets, these results will be 
focused on analyzing performance at the individual tile 
level. These examples display substantial variance as each 
prediction is made on a 512 × 512 slice of the image, with 
no aggregation of more and less informative regions. Stain 
alteration, tissue folds, marker lines, and sectioning artifacts 
show some of the largest variances in probabilities [Figure 3]. 
However, while the median probability did decrease in some 
of the more extreme examples, most of the probability change 
was increased variance. As would be expected, the shift in 
probability was usually related to the percentage of tiles that 
were altered within an experiment.

The subclass  area  under  the  receiver  operat ing 
characteristic  (AUROC) of the lung tissue classification 
model shows a significant but small decrease compared to the 
unaltered control for many of the artifact types [Figure 4]. 
Reflecting the pattern seen in probability variance, the 
artifact types with the greatest decrease in AUROC were 
stain alteration, tissue folds, marker lines, and uneven 
sectioning.

Kidney pathology results
The kidney pathology segmentation model had the same set 
of artifact experiments performed, and then, the AUROC 
was calculated on a per tissue component type  (subclass) 
basis [Figure 5]. The artifacts which had the largest effect on 
the segmentation accuracy and AUROC were tissue folds, stain 
alteration, and marker lines.

Ten tiles were collected in more detail to investigate the 
changes in segmentation patterns in more depth. Two 
examples are provided in Figures  6 and 7, one which had 
multiple subclasses (four of the six potential subclasses) and 
another which consisted of the most common two subclasses 

(tubules and interstitium). Of these two examples, the initial 
segmentation on the tile with four subclasses was worse than 
the two‑subclass tile. That four‑subclass tile was also more 
affected by artifacts in general than the two‑subclass tile.

Even in these few examples, while often the areas altered by 
artifacts have the most change, the changed labels are not 
always limited to that area. For example, the addition of a tissue 
tear through part of a region changed an entire area labeled as 
tubules to open glomeruli. Interestingly, marker and tissue fold 
artifacts sometimes produce the “miscellaneous” label which 
represents areas that had been labeled as an artifact in the initial 
sample by a pathologist. Overall, as might be expected from a 
deep learning model, the relationship between artifacts added 
and labels changed is nonlinear.

Discussion

We were able to successfully create artifacts for histopathology 
slides to apply to these tiles based on the literature. 
These artifacts come in a variety of forms and could 
be applied at varying levels of frequency. We were able to 
use these artifacts to stress test this machine learning model 
for lung cancer tissue. While there was a dose–response 
effect when increasing the presence of artifacts and increased 
uncertainty in these models, the effect level varied between 
the segmentation and classification tasks.

An important limitation of the lung cancer dataset is that 
because we worked off a pretrained model, we did not have 
information about which slides in the TCGA dataset were used 
as training examples. This makes it quite likely that many 
slides we included in our evaluations were already seen in 
training, and as such may not be a fair evaluation of the model’s 
performance. Especially in the cases of experiments in which 
not all tiles were manipulated, it is quite possible that the model 
had already learned from that example, grossly inflating the 
prediction probability. While the reductions in probability we 
did see gives us confidence in our approach, future efforts 
should attempt to find an independent classification dataset 
for use in all studies.

The uncertainty surrounding the training and testing split 
was not an issue in the kidney pathology. As such, any 
changes in performance were on the held aside testing 
dataset. The changes in subclass AUROC were somewhat 
larger for the segmentation dataset but more variable across 
the subclasses. One interesting finding was the appearance 
of a miscellaneous artifact label in some of the marker 
and tissue fold experiments. There may be some value 
in having building in artifact classes into a segmentation 
model to increase the detectability of artifacts in a pipeline. 
One other note to make is that the slides had been stain 
normalized as part of the preprocessing for kidney tissue 
segmentation where the lung tissue classification samples 
had not been. This may mean that the segmentation model 
as part of a pipeline would have a reduced susceptibility to 
stain artifacts.
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Future work
While seven artifact types have been included in this version 
of this testing, there are a large number of other potential 
artifact candidates that could be simulated. We consulted with 
pathologists (A.M and J.H) to determine some of the most 
common problems that occur, but many more artifacts exist. 
For example in frozen samples, artifacts like ice crystals 
or tissue damage can occur that are specific to the mode 

of tissue preservation.[31] In nonpolar solvents or paraffin 
embedding of fatty tissues, some of the fat can dissolve and 
leave voids behind.[17] In addition, the parameterization of 
these generated artifacts could be tuned and evaluated for 
its effects. Finally, there was no bias between the classes 
in the artifacts generated, as normal, LUAD, and LUSC 
were treated identically, but this may not necessarily be the 
case in a worst‑case scenario.  Overall, this framework is 

Figure 3: Tile level average predicted probabilities after artifacts were added. The three tissue types were split into separate categories, and the average 
probability is shown relative to the control set of images. In some cases, the probabilities had more spread, indicating some tiles had higher uncertainty

Figure 4: Tile level area under the receiver operating characteristics with confidence intervals after artifacts were added. The three tissue types were 
split into separate categories, and the subclass area under the receiver operating characteristic is shown relative to the control set of images. On a 
tile level, predictive performance was somewhat decreased by the artifacts introduced. Note that the area under the receiver operating characteristic 
y‑axis ranges from 0.50 to 1
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meant to be flexible and additive so that artifacts that occur 
frequently can be evaluated and simulated using pertinent 
generative models.

Using a GPU‑equipped desktop allowed for the testing 
of a large number of tiles and a variety of generated 
artifacts. Processing the entire set of histopathology 
slides under the array of imaging artifacts introduced took 
approximately 6 days of computational time. However, to 
further tune the parameterization of artifacts introduced, 
more computational power would likely be necessary. 
This artifact generation approach is highly parallelizable 
and would also lend itself well to a distributed computing 

framework. Even still, further code optimizations are worth 
investigating.

We also believe this same framework and toolset could be applied 
to additional digital pathology models. Of specific interest would 
be models that look more at global patterns within a tissue slide. 
Our current approach randomly manipulates tiles without any 
regard for a spatial relationship, as our tested model does not 
account for tile relationships. However, we can imagine scenarios 
in which a fold through the entire slide causes effects more global 
than a single tile but does not affect the entire image. Adapting 
these methods for models that can account for such structures 
might identify more global failure modes in those models.

Figure 5: Area under the receiver operating characteristic and accuracy of kidney segmentation model after addition of artifacts, broken down by 
tissue component type (subclass). Area under the receiver operating characteristic focuses on the change in probability score produced by the model 
and its effect, whereas accuracy shows the change in predicted class. The baseline performance in the control experiment is described at the top of 
each chart. While tissue fold, marker, and stain alterations show the biggest changes, there is a lot of variability between subclasses. The prevalence 
of each subclass in the ground truth varies by several orders of magnitude across the six subclasses

Figure 6: A selected example of the effects of artifacts on a single kidney tissue sample tile. This tile is notable for the presence of four tissue component 
types (subclasses) in the ground truth. Notably, the baseline model had difficulty properly identifying interstitium in this tile. Tissue folds and marker 
line artifacts both resulted in the “miscellaneous (Misc)” label originally designated for stain deposit artifacts
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Figure 7: A second selected example of the effects of the impacts of artifacts. This example had only two tissue component types (subclasses) 
represented in the ground truth label, tubules, and interstitium. Of the ten tiles selected for further inspection, eight of ten had only these two most 
common labels. While tissue fold and marker artifacts did have the most effect on the labels, overall most of the artifacts applied had limited impact 
on this tile.

Conclusions

Based on the experiments conducted here, this package can help 
show where complex histopathology models may fail due to 
artifacts. It also helps to highlight the importance of preprocessing 
pipelines that can identify and handle artifacts. Several of the 
artifacts with the largest effect are those that change the color 
and/or contrast of the image (i.e.,  stain, sectioning, marker, 
and folds). As staining is known to vary across sites, it further 
emphasizes the need for consistent stain normalization. Those 
areas with artifacts can be dramatically altered, and the effect 
is often nonlinear and model and task dependent. Artifact 
generation can be a useful tool to increase the trustworthiness 
of models and provide a testing framework to understand the 
failure modes of deep learning models.

Availability: Code documenting our entire workflow, as well 
as input dataset manifests, is available at https://github. com/
Systems‑Imaging‑Bioinformatics‑Lab/histopath_failure_modes.
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